UBM-based sequence kernel for speaker recognition

نویسنده

  • Zhenchun Lei
چکیده

This paper proposes a probabilistic sequence kernel based on the universal background model, which is widely used in speaker recognition. The Gaussian components are used to construct the speaker reference space, and the utterances with different length are mapped into the fixed size vectors after normalization with correlation matrix. Finally the linear support vector machine is used for speaker recognition. A transition probabilistic sequence kernel is also proposed by adaption the transition information between neighbor frames. The experiments on NIST 2001 show that the performance is compared with the traditional UBM-MAP model. If we fusion the models, the performance will be improved 16.8% and 19.1% respectively compared with the UBM-MAP model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A GMM-based probabilistic sequence kernel for speaker verification

This paper describes the derivation of a sequence kernel that transforms speech utterances into probabilistic vectors for classification in an expanded feature space. The sequence kernel is built upon a set of Gaussian basis functions, where half of the basis functions contain speaker specific information while the other half implicates the common characteristics of the competing background spe...

متن کامل

High-level speaker verification via articulatory-feature based sequence kernels and SVM

Articulatory-feature based pronunciation models (AFCPMs) are capable of capturing the pronunciation variations among different speakers and are good for high-level speaker recognition. However, the likelihood-ratio scoring method of AFPCMs is based on a decision boundary created by training the target speaker model and universal background model (UBM) separately. Therefore, the method does not ...

متن کامل

A new kernel for SVM MLLR based speaker recognition

Speaker recognition using support vector machines (SVMs) with features derived from generative models has been shown to perform well. Typically, a universal background model (UBM) is adapted to each utterance yielding a set of features that are used in an SVM. We consider the case where the UBM is a Gaussian mixture model (GMM), and maximum likelihood linear regression (MLLR) adaptation is used...

متن کامل

Addressing the Data-Imbalance Problem in Kernel-Based Speaker Verification via Utterance Partitioning and Speaker Comparison

GMM-SVM has become a promising approach to textindependent speaker verification. However, a problematic issue of this approach is the extremely serious imbalance between the numbers of speaker-class and impostor-class utterances available for training the speaker-dependent SVMs. This data-imbalance problem can be addressed by (1) creating more speaker-class supervectors for SVM training through...

متن کامل

Fusing Generatve and Discriminative Ubm-based Systems for Speaker Verification

In the past few years, discriminative approaches to perform speaker detection have shown good results and an increasing interest. Among these methods, SVM based systems have lots of advantages, especially their ability to deal with a high dimension feature space. Generative systems such as UBM-GMM systems show the greatest performance among other systems in speaker verification tasks. Combinati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009